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1 Introduction
Randomness is a powerful resource in the design of algorithms. For many fundamental algorithmic
problems, the guarantees known to be achievable deterministically lag behind those achieved when
granted access to randomness; this is certainly true for measures of complexity such as runtime, but
extends to other resources such as space.1 Moreover, randomized algorithms are often simpler and
more elegant than deterministic counterparts, which is frequently beneficial in practice. Finally, in
modern data science applications, the algorithmic problem itself is often inherently random, i.e.,
our goal is to learn about a distribution, but we only see samples from that distribution.

These notes introduce the design and analysis of randomized algorithms. While randomized so-
lutions are often clean and intuitive, there are many subtleties that arise in their analysis, so
algorithm designers must be careful. For instance, how do we quantify the performance of ran-
domized algorithms, if they do not always succeed? We will explore several strategies for reasoning
about a randomized algorithm A’s “typical behavior,” as well as statements of the form, with prob-
ability 1− δ, A satisfies some guarantee. Here δ is called the “failure probability,” i.e., the chance
that A does not yield the desired outcome. In different applications of interest, different δ may be
more appropriate; at minimum we would like δ to be a small constant (e.g., δ = 0.1), but often,
we can provide significantly stronger bounds (e.g., δ = 1

poly(n) ).

As a basic example we have already seen, consider the Selection algorithm in Section 6.2, Part II.
A key subroutine used was FindPivot(L), which takes as input a list L of n real numbers, and tries
to find an entry x ∈ L of “middling” rank. Here, the rank rank(x) of an entry x ∈ L is the number
of entries in L that are no larger than x. In particular, our goal is to find the kth largest entry,
for any value k satisfying, say, n4 ≤ k ≤

3n
4 . As a reminder, FindPivot is a core subroutine of both

Selection and the famous Quicksort algorithm. Our solution in Section 6.2, Part II was based on
the median-of-medians approach, and was quite complicated, interleaving Selection with FindPivot
steps recursively. Recall that the payoff at the time was an O(n) time FindPivot algorithm.

There is another, much simpler, solution that uses randomness to achieve the same runtime in ex-
pectation. First, observe that for any x ∈ L, we can compute rank(L) in O(n) time by maintaining
a counter and comparing x to each other entry in a single pass. Call an entry x ∈ L “middling” if
n
4 ≤ rank(x) ≤ 3n

4 . Specifically, consider selecting a uniformly random index i ∈ [n], and returning
x← L[i]. Up to rounding errors, this algorithm succeeds with probability 1

2 in returning a middling
entry, and as mentioned, we can verify whether the algorithm succeeds in O(n) time.

Our randomized implementation of FindPivot is now easy to describe: repeatedly sample an index
i ∈ [n] uniformly at random (called a “trial”) until n

4 ≤ rank(L[i]) ≤ 3n
4 . What is the expected

number of trials we require until the algorithm finishes? We can perform a direct calculation: letting
X ∈ N denote the random variable corresponding to the number of trials before termination. Then,

Pr[X = i] =

(
1

2

)i−1

· 1

2
=

1

2i
for all i ∈ N,

1In some cases, this manifests as a polynomial-time speedup, i.e., a deterministic solution running in O(n2) time
can be improved to O(n) with randomness. However, there are certain problems for which there are simple, efficient
randomized solutions, but it is not even known whether the problem is solvable deterministically in polynomial
time. Up until somewhat recently, checking for primality of an integer was such an example, until the breakthrough
deterministic algorithm of [AKS04]. Another example that still stands to this day is polynomial identity testing,
i.e., testing whether a polynomial (given as an arithmetic circuit) always evaluates to zero.

1



because the algorithm must fail its first i− 1 trials, and succeed on the last. We can then compute

E [X] =
∑
i≥1

Pr [X = i] · i =
∑
i≥1

i

2i
=

1

2
+

2

4
+

3

8
+

4

16
+ . . .

=

(
1

2
+

1

4
+

1

8
+ . . .

)
+

(
1

4
+

1

8
+

1

16
+ . . .

)
+

(
1

8
+

1

16
+

1

32
+ . . .

)
+ . . .

= 1 +
1

2
+

1

4
+ . . . = 2.

(1)

Thus we are expected to succeed in just 2 trials, which amounts to a runtime of 2 · O(n) = O(n)
when accounting for the time required for verification in each trial. We have thus matched the
FindPivot algorithm’s runtime from Section 6.2, Part II in expectation, but with a significantly more
practical algorithm. This example is a first taste of both the simplicity and power of randomness,
recurring themes that we explore throughout these notes.

2 Dependent random variables
One issue that frequently arises when randomness meets algorithm design is that the resulting
random variables are often dependent. Recall that random variables X and Y are independent if
the outcome of Y has no bearing on X’s outcome, i.e., the conditional random variable X | Y = y
has the same distribution as X for any possible outcome y (for a refresher, see Section 6, Part I).

Independence is a convenient property for analysis purposes. Unfortunately, it is also completely
at odds with how algorithms operate. Typical randomized algorithms make different decisions
depending on the realization of random events, due to their iterative nature. For example, in our
randomized FindPivot, whether or not the second trial occurs directly depends on the first trial’s
outcome. Such dependencies between iterations arise often in randomized algorithms.

In this section, we first explore two basic tools for reasoning about dependent random variables:
linearity of expectation and the union bound, along with several motivating examples. We apply
these tools to analyze a simple contention resolution scheme for distributed computing applications.

2.1 Basic tools
Here, we introduce two probabilistic techniques with wide general applicability. A major upside of
both is that they apply equally well to independent and dependent random variables.

Linearity of expectation. Let X and Y be arbitrary real-valued random variables. The principle
of linearity of expectation states that

E [X + Y ] = E[X] + E[Y ]. (2)

There is no catch here: (2) is literally always true. This is a ridiculously powerful fact, and shows
up in the analysis of every randomized algorithm (e.g., as we need to bound the runtime of multiple
steps). For instance, by recursively applying (2) we have the following generalization:

E

∑
i∈[n]

Xi

 =
∑
i∈[n]

E[Xi], (3)

for any n ∈ N and real-valued random variables {Xi}i∈[n]. Here are a few famous applications.

Suppose all n students in class give their backpack to a doorman, who writes down the names
of each backpack’s owner and memorizes everyone’s face, matched to a name. If the doorman
changes, the new doorman must randomly give backpacks back to students. How many students
are expected to receive the correct backpack? There are many reasonable models here; we let the
new doorman pick a uniformly random matching from names to students, and pass out backpacks
based on it. Although this is a complicated distribution, the only fact we will need is that each
student receives their backpack with probability 1

n , which should be clear from symmetry.
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Now we can solve the problem. Let Xi be the 0-1-valued random variable corresponding to whether
student i ∈ [n] received their backpack. If p is the probability that Xi = 1, and

E[Xi] = p · 1 + (1− p) · 0 = p, (4)

then we have shown p = 1
n . This appears to be hard to relate to T , the total number of students who

received the correct backpack, because T is an integer and each E[Xi] = p is fractional. However,
T =

∑
i∈[n]Xi by definition. Thus we can apply (3) and complete the calculation instantly:

E [T ] = E

∑
i∈[n]

Xi

 =
∑
i∈[n]

E[Xi] = n · 1

n
= 1.

In this application, Xi was an example of an indicator random variable. More generally, for
any random event E that may or may not happen, we define a corresponding indicator random
variable IE that evaluates to 1 if E happens, and otherwise it evaluates to 0. This notation often
simplifies proofs, as indicator random variables have many convenient interpretations: for example,
a straightforward generalization of (4) shows that all events E satisfy

E [IE ] = Pr [E occurs] . (5)

Next, we consider the coupon collector problem. In this problem, you are trying to collect n
different coupons that arrive randomly in the mail every week, where you win a prize only if you
assemble at least one copy of every coupon. All coupons you receive are uniformly random. What
is the expected number of weeks that need to pass before you collect all unique coupons?

The basic observation is the following. Let Xi ∈ N be the number of weeks that pass after you
receive your (i−1)th unique coupon, until you receive your ith unique coupon. For example, if you
receive your 4th unique coupon the week after you receive your 3rd, then X4 = 1. We claim that

E[Xi] =
n

n− (i− 1)
(6)

To see this, we need a more general principle. Suppose you have a two-sided coin that is biased to
come up heads with probability p ∈ (0, 1). How many times do you have to toss it in expectation
to see your first heads? Letting X be the number of tosses needed, X is an example of what is
known as a geometric random variable. It is straightforward to check that

Pr[X = i] = (1− p)i−1p, for all i ∈ N.

Moreover, a generalization of (1) shows that

E [X] =
∑
i≥1

Pr [X = i] · i =
∑
i≥1

i(1− p)i−1p

=
∑
i≥1

(1− p)i−1p+
∑
i≥2

(1− p)i−1p+
∑
i≥3

(1− p)i−1p

=
∑
i≥1

(1− p)i−1p+ (1− p)
∑
i≥1

(1− p)i−1p+ (1− p)2
∑
i≥1

(1− p)i−1p+ . . .

=

∑
j≥0

(1− p)j
∑

i≥1

(1− p)i−1p

 =
1

p
· 1 =

1

p
,

(7)

where we use that the sum of an infinite geometric sequence with first term a and common ratio
r ∈ (−1, 1) is a

1−r . Now, returning to our coupon collector problem, Xi is a geometric random
variable with mean Pr[Xi = 1] = n−(i−1)

n , because in each week, there are n− (i− 1) new unique
possible coupons, out of n in total. Thus applying (7) yields the claim (6).

Now we can conclude our calculation of E[
∑
i∈[n]Xi], the total number of weeks that must pass

for all unique coupons to appear. We have by (6) that

E

∑
i∈[n]

Xi

 =
∑
i∈[n]

n

n− (i− 1)
= n ·

∑
i∈[n]

1

i
= O(n log(n)).
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The last equality,
∑
i∈[n]

1
i = O(log(n)), is an excellent example of a continuous perspective making

a discrete problem simpler: by bounding 1
i ≤

∫ i
i−1

1
t dt, we have

∑
i∈[n]

1

i
≤ 1 +

n∑
i=2

1

i
≤ 1 +

∫ n−1

1

1

t
dt = 1 + log(n− 1) = O(log(n)).

Union bound. The union bound is the second most general-purpose tool for reasoning about
multiple, potentially dependent, random variables. Consider a set of k events, E1, E2, . . . , Ek each
of which may or may not happen. In particular, we allow for arbitrary dependencies between these
events. However, one fact that is generically true is that

Pr
[
at least one of {Ei}i∈[k] occurs

]
≤
∑
i∈[k]

Pr[Ei occurs].

For shorthand, we will abbreviate the above expression by

Pr

 ⋃
i∈[k]

Ei

 ≤∑
i∈[k]

Pr [Ei] . (8)

The simplest proof of (8) uses the observation that for any events {Ei}i∈[k],

I⋃
i∈[k] Ei ≤

∑
i∈[k]

IEi ,

because the left-hand side is 0 unless at least one event occurs, in which case it is 1, but the
right-hand side is clearly ≥ 1 in this case. By taking expectations of both sides, and applying (3)
and (5), we have proven the union bound (8), without using any independence assumptions.

A classic application of (8) is the birthday paradox. Suppose each of the n students in class has
a uniformly random birthday, all chosen independently out of m possible days of the year. What
is the probability that no two students share a birthday? This question has real-life applications,
e.g., in hashing, where we would like to prevent objects from randomly hashing to the same slot.

Alternatively, by taking complements, an equivalent question is: what is the probability that some
pair (i, j) ∈ [n] × [n] with i 6= j have the same birthday? For all such pairs (i, j), define an event
Ei,j corresponding to students (i, j) sharing a birthday. Regardless of the ith student’s birthday,
this probability is 1

m for a random independently sampled jth student’s birthday. Thus by (8),

Pr

 ⋃
(i,j)∈[n]×[n]

i<j

Ei,j

 ≤ ∑
(i,j)∈[n]×[n]

i<j

Pr [Ei,j ] =

(
n

2

)
· 1

m
=
n(n− 1)

2m
.

This shows that no two students share a birthday with probability at least 1 − n(n−1)
2m . Thus, if

e.g., n �
√
m, it is reasonably likely that no two students share a birthday. This lower bound

breaks down in the regime n &
√
m, which requires stronger tools to understand. A summary of

the birthday paradox is that when n is even a little bit larger than
√

2m, it turns out (though we
will not prove it here) that the probability no two students share a birthday rapidly drops down
to 0. For example, if m = 365, then

√
2m ≈ 27, which is a surprisingly small number.

2.2 Contention resolution
In this section, we apply the tools we have developed to a distributed computing problem, con-
tention resolution. In this problem, we have n ≥ 2 different processes which are competing for a
shared resource, e.g., a central server or database. Their goal is to each use the resource for one
unit of time, so they can complete their job. However, the processes cannot communicate with each
other, so at each time step, they can only make a binary decision on whether or not to attempt to
access the shared resource. For example, the ith machine can choose to make an attempt on time
steps 1, 3, and 6, and wait on all other time steps. If it successfully becomes the only machine to
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request access to the shared resource on a given time step, it receives a message that it successfully
completed its job. The goal is to design a protocol so that all n processes complete their jobs in
as few time steps as possible. Clearly, the fewest time steps achievable is n.

This problem serves as a reasonable basic model of distributed computing, whether it be multiple
processes on the same machine attempting to access a shared resource, or multiple servers in a
network. It also is a first introduction to another computational resource beyond runtime that is
often studied in distributed algorithmic settings: communication. In the variant of the contention
resolution problem we consider, we model communication access in a fairly extreme way (i.e., no
two processes can communicate), but more generally it can be interesting to bound distributed
algorithm complexities under a communication budget.

We analyze the simplest possible protocol for this problem: at every time step, each process
attempts to use the shared resource independently with probability 1

n . Note that a process succeeds
in being the unique process to access the shared resource in a time step, with probability

p :=
1

n
·
(

1− 1

n

)n−1

,

because it needs to make an attempt (with probability 1
n ), and all of the other n − 1 processes

need to independently decide not to use the resource (with probability 1− 1
n ).

At this juncture, it is useful to mention the extremely useful approximation

1

4
≤
(

1− 1

n

)n
≤ 1

e
, for all n ≥ 2. (9)

The way to remember this approximation is that as n→∞, we know that (1− 1
n )n → 1

e , and this
expression is minimized at n = 2, where we can check ( 1

2 )2 = 1
4 . Therefore, we have

p =
1

n
·
(

1− 1

n

)n−1

≥ 1

n
·
(

1− 1

n

)n
≥ 1

4n
.

We can thus bound the probability that a process i ∈ [n] fails to uniquely access the shared resource
in each of T = d4Cn log(n)e time steps, for any constant C > 1, by

(1− p)T ≤
(

1− 1

4n

)T
≤

((
1− 1

4n

)4n
)C log(n)

≤
(

1

e

)C log(n)

=
1

nC
.

In the third inequality, we used the upper bound in (9) again. For example, the probability that
process i ∈ [n] fails to uniquely access the shared resource in each of T > 8n log(n) time steps is
≤ 1

n2 . At a constant factor increase in T , this failure probability decreases exponentially.

We have now bounded the probability that a single machine fails to uniquely access the shared
resource in T time steps, but our goal was to serve all n processes. Fortunately, this is a ripe
opportunity for the union bound (8). For all i ∈ [n], let Ei denote the event that after T time
steps, the ith process has not been successfully served. We have argued that for T > 8n log(n),
Pr[Ei] ≤ 1

n2 , so an application of (8) gives:

Pr

 ⋃
i∈[n]

Ei

 ≤ ∑
i∈[n]

1

n2
=

1

n
.

The left-hand side above is the probability that any one process has not been successfully served.
Therefore, by taking complements, all processes are served with success probability at least 1− 1

n ,
which is a very strong bound as n grows large. It is surprising that we are able to achieve such
a bound in only O(n log(n)) time steps using a simple contention resolution algorithm with no
inter-process communication, given that n time steps are necessary even with communication.

This application is a basic example of the power of independent repetition in randomized algorithm
design. Even though each individual time step is extremely unlikely to serve any given machine
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(with a success probability ≤ 1
n ), if we repeat trials enough times (e.g., ≈ n log(n) trials), even the

success probability for all processes becomes very close to 1.

Our algorithm had the interesting property of having a much smaller failure probability at a
slight runtime increase: for instance, taking T > 16n log(n) improves the failure probability to
n · 1

n4 = 1
n3 . Randomized algorithms with failure probability inverse-polynomial in the input size

n are often colloquially said to succeed “with high probability.” This is often the gold standard in
randomized algorithm design, compared to an algorithm with, e.g., a 1

10 failure probability, for the
same reason that we typically use asymptotic runtimes to benchmark algorithm performance: all
else held equal, we should prefer the algorithm that scales better to large inputs.

3 Concentration
In Section 2.2, we saw a basic example of boosting success probabilities via repetition. Specifically,
our main observation was that if we run an algorithm A and some desired outcome E occurs with
probability ≥ p, then if we run A for ≈ 1

p times, it is reasonably likely that we will see at least one
successful run. To extrapolate slightly, if we let T > 1

p log( 1
δ ), then by a variant of (9),

Pr [E does not occur in T runs of A] = (1− p)T ≤
(

(1− p)
1
p

)log( 1
δ )

≤
(

1

e

)log( 1
δ )

≤ δ. (10)

Such a strategy is effective when we can efficiently verify whether a run of A succeeded, e.g., in
our FindPivot example in Section 1, verification requires O(n) time. However, note that in this
example, the cost of running A was only O(1), whereas verification was much more expensive.
This begs the question: can we directly boost success probability with another strategy?

In this section, we take a broader viewpoint on this question, and introduce concentration as a
tool for understanding the behavior of random variables. We then show how to use concentration
with simple aggregation tricks like taking the mean or median to boost success probabilities.

3.1 Concentration from variance
The basic statistic we use to measure concentration in this section is the variance:

Var[X] := E
[
X2
]
− E [X]

2
. (11)

The variance is always nonnegative: to remember this, the function f(x) = x2 is convex, so f(E[X])
stays “below the line” predicted by E[f(X)]. The reason why it is useful is due to the identity

E
[
(X − E[X])

2
]

= E
[
X2
]
− 2E [X · E[X]] + E[X]2

= E
[
X2
]
− 2E [X]

2
+ E [X]

2
= Var [X] .

(12)

The formula (12) is another common definition of the variance, and shows that
√

Var[X], the
standard deviation, is a decent proxy for how large we expect the “spread” |X − E[X]| to be on
average. We will give tools to make this intuition precise in this section.

Before we do, however, we develop some helpful calculation rules for the variance. Two commonly-
used properties of the expectation are that if X is a random variable, E[cX] = cE[X] for any
constant multiple c ∈ R, and if Y is another random variable, E[X + Y ] = E[X] + E[Y ] (linearity
of expectation). An analog of the first statement is also true for the variance, by (12):

Var [cX] = E
[
(cX)2

]
− E [cX]

2
= c2

(
E
[
X2
]
− E [X]

2
)

= c2Var[X]. (13)

This makes sense intuitively, as we would expect cX to have an “average spread” about c times
larger than X, and the variance captures the average squared spread. However, the analog of the
linearity of expectation is not true in general, and may not hold for dependent X, Y :

Var [X + Y ] = E
[
(X + Y )

2
]
− E [X + Y ]

2

= E
[
X2
]

+ 2E [XY ] + E
[
Y 2
]
− E

[
X2
]
− 2E [X] E [Y ]− E

[
Y 2
]

= Var [X] + Var [Y ] + 2 (E [XY ]− E [X] E [Y ])

= Var [X] + Var [Y ] , if X,Y are independent.

(14)
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In the last line, we used that independence of X,Y implies E[XY ] = E[X]E[Y ] (see discussion in
Section 6, Part I). As a word of warning, if this does not hold, then we cannot use (14).

With these calculation rules in mind, we introduce our main tools for using the variance to reason
about concentration. We begin with Markov’s inequality as a warmup.

Lemma 1 (Markov’s inequality). For any nonnegative random variable X and any δ ∈ (0, 1),

Pr

[
X ≥ E [X]

δ

]
≤ δ.

Proof. Suppose otherwise, i.e., that X ≥ E[X]
δ with probability > δ. Then, we have a contradiction:

E [X] = Pr

[
X ≥ E [X]

δ

]
· E
[
X | X ≥ E [X]

δ

]
+ Pr

[
X <

E [X]

δ

]
· E
[
X | X <

E [X]

δ

]
≥ Pr

[
X ≥ E [X]

δ

]
· E
[
X | X ≥ E [X]

δ

]
> δ · E [X]

δ
= E [X] .

For slightly more intuition on the proof of Lemma 1, consider δ = 1
2 ; it is just saying that a random

variable cannot be more than twice its expectation, more than half the time, or this contribution
would already overshoot its expectation. Lemma 1 generalizes this to arbitrary δ.

While Lemma 1 gives us a basic sense of how a random variable deviates from its mean, it is
unsatisfactory in a few ways. First, it only applies to nonnegative X, and second, it can only
prove loose bounds of the form, X ≤ 10E[X] except with probability 1

10 . Fortunately, the following
extension of Lemma 1 is usually more applicable and lets us prove much stronger statements.

Lemma 2 (Chebyshev’s inequality). For any random variable X and any δ ∈ (0, 1),

Pr

[
|X − E[X]| ≥

√
Var[X]√
δ

]
≤ δ.

Proof. Applying Lemma 1 with X ← (X − E[X])2, we have from (12) that

Pr

[
(X − E[X])2 ≥ Var[X]

δ

]
≤ δ.

The claim follows because

(X − E[X])2 ≥ Var[X]

δ
⇐⇒ |X − E[X]| ≥

√
Var[X]√
δ

.

The precise dependence of Chebyshev’s inequality on δ is not extremely important towards its
qualitative message, which is that, with a large constant probability, any random variable X lies
within a few standard deviations of its mean. For example, taking δ = 1

4 in Lemma 2 gives

Pr
[
X ∈

[
E[X] + 2

√
Var[X],E[X]− 2

√
Var[X]

]]
≥ 3

4
. (15)

3.2 Boosting concentration
While Lemma 2 gives us a preliminary interval where a random variable will likely lie, it loses
somewhat large constant factors in the bound, and its range depends polynomially on the failure
probability δ. We would prefer that our algorithm’s guarantees depend on log( 1

δ ), as was the case
in (10). In this section, we give a simple framework for improving both of these dependences.

Mean boosting. The first technique is a simple strategy for improving the “radius” of the interval
predicted by Lemma 2 by a constant factor. In particular, suppose we have the ability to generate
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multiple independent copies of X. This could be the case if X is the output of an algorithm A is
trying to estimate some quantity; we just call A independently in parallel multiple times.

The key observation is that if {Xi}i∈[k] are independent copies ofX, then if we let X̄ := 1
k

∑
i∈[k]Xi

denote their average, we have from (13) and (14) that

Var
[
X̄
]

=
1

k2
Var

∑
i∈[k]

Xi

 =
1

k2

∑
i∈[k]

Var[Xi] =
1

k
Var[X]. (16)

Here, independence was crucially used in the second equality (i.e., in (14)).

The takeaway from (16) is that if we can run an experiment multiple times, we can decrease the
variance (and hence the length of the predicted interval due to Lemma 2) by a constant factor.
More generally, if we want to decrease said interval length by a factor of ε ∈ (0, 1), we should take
k ≈ ε−2. As an example application, if X̄ is the average of ε−2 independent random copies of X,
then in place of (15), we have the much tighter bound

Pr
[
X̄ ∈

[
E[X]− 2ε

√
Var[X],E[X] + 2ε

√
Var[X]

]]
≥ 3

4
.

Median boosting. The second technique is a generic tool for improving the failure probability
of an interval prediction to δ ∈ (0, 1), at an O(log( 1

δ )) overhead in runtime.

Lemma 3. Let I ⊂ R be an interval, and suppose that for some random variable X, Pr[X ∈ I] ≥ 3
4 .

Then if {Xi}i∈[k] are independent copies of X for k ≥ 12 log(1
δ ), and X̂ is the median of {Xi}i∈[k],

Pr
[
X̂ ∈ I

]
≥ 1− δ.

Proof. We first claim that if > k
2 of the independent copies fall in I, then so will the median X̂.

To see this, if X̂ is right of I, then so are at least half of the copies, a contradiction; a similar
argument rules out X̂ being left of I. Thus our goal is to argue that except with probability δ, at
least half of the copies fall in I. Each copy falls in I with some probability p ≥ 3

4 .

The claim follows from a standard concentration inequality known as a Chernoff bound (see e.g.,
[Wik24]). This goes beyond the scope of this class, so we will not prove it here, but we do wish to
give some intuition on why it applies in this case. Observe that we are trying to bound

∑
i≥ k2

(
k

i

)
(1− p)ipk−i ≤

∑
i≥ k2

(
k

i

)(
1

4

)i(
3

4

)k−i
≤ δ,

where the ith term captures the probability that exactly i of the copies fall outside of I. The main
idea is that this sequence decreases geometrically:

(
k
i

)
is decreasing for i ≥ k

2 , and ( 1
4 )i( 3

4 )k−i

decreases by a factor of 3 as i increases by 1. A geometric sequence is dominated by its largest
term, which is the first term in this case, so it suffices to show(

k

k/2

)(
1

4

) k
2
(

3

4

) k
2

≤ 2k
(

3

16

) k
2

≤
(

3

4

) k
2

= O(δ).

In the first inequality, we used
(
k
k/2

)
≤
∑k
i=0

(
k
i

)
= 2k. The claim follows if k = Θ(log( 1

δ )).

Combining median boosting with mean boosting, we have shown that if Chebyshev’s inequality
(Lemma 2) predicts that X ∈ I := [E[X] − R,E[X] + R] with probability ≥ 3

4 , then by sampling
O(log( 1

δ )·ε−2) independent copies of X, we can produce an estimate X̂ such that the much stronger
guarantee X̂ ∈ [E[X]− εR,E[X] + εR] holds with probability ≥ 1− δ.

Notably, this works regardless of our ability to ascertain whether a given copy of X fell in I. Thus,
for problems where our goal is to estimate an unknown quantity E[X], the strategies in this section
can generically be used to boost performance of a simple estimator X with bounded variance.
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3.3 Morris counter
We now give a famous application of the machinery in Section 3.2. Just as contention resolution
(Section 2.2) demonstrated the power of randomness in saving on communication as a computa-
tional resource, this example will show how it can be used to save on space.

The problem is as follows: we want to build a data structure that initializes i → 0 and supports
two operations, Count() and Report(). Each time Count() is called, i is incremented, and finally
after n calls to Count(), we call Report(). The goal of Report() is to report an estimate of n. This
is trivial if we are allowed O(log(n)) space (we can just write the binary representation of n), so
the interesting problem is to design a data structure using less space.

This is motivated by settings requiring many counters of many large numbers. For example, this
could easily be the case if you are running a web crawler or search engine: even a constant factor
savings in the number of bits required per counter could make a huge impact on your overall space
usage. Indeed, the original motivation of Morris [Mor78], who gave the first nontrivial algorithm
for this problem, was to count 263 ≥ 104 different trigrams for implementing a spellchecker.

We consider the following Morris counter algorithm, which stores a random variable X initialized
at X ← 0. It implements Count() as follows: with probability 2−X , X ← X+1. Its implementation
of Report() is to return 2X − 1. Intuitively, the goal of X is to approximate log(i + 1), which it
simulates by rarely incrementing. Note that as long as X = O(log(n)), we can store it with a much
smaller O(log log(n)) bits, compared to directly storing i. We prove the following claims.

Lemma 4. For all 0 ≤ k ≤ n, let Xk denote the value of the random variable X after Count() is
called exactly k times. Then for all 0 ≤ k ≤ n,

E
[
2Xk

]
= k + 1.

Proof. We use induction. This is clear when k = 0, so it remains to show E[2Xk+1 ] = E[2Xk ] + 1
for all k ≥ 0, i.e., that our estimator’s expectation grows by 1 when Count() is called. To see this,

E
[
2Xk+1

]
=
∑
j≥0

Pr[Xk = j] ·
((

1− 1

2j

)
· 2j +

1

2j
· 2j+1

)
=
∑
j≥0

Pr [Xk = j] ·
(
2j + 1

)
=
∑
j≥0

Pr[Xk = j] · 2j +
∑
j≥0

Pr[Xk = 1] = E
[
2Xk

]
+ 1.

(17)

Lemma 5. In the setting of Lemma 5, for all 1 ≤ k ≤ n,

Var
[
2Xk

]
≤ 4k2.

Proof. Recall that Var[2Xk ] = E[4Xk ]− E[2Xk ]2 ≤ E[4Xk ]. We claim E[4Xk ] = 3
2k

2 + 3
2k+ 1, which

is clear when k = 0. The general claim follows analogously to (17): by induction,

E
[
4Xk+1

]
=
∑
j≥0

Pr [Xk = j] ·
((

1− 1

2j

)
· 4j +

1

2j
· 4j+1

)
=
∑
j≥0

Pr [Xk = j] · 4j + 3
∑
j≥0

Pr [Xk = j] · 2j

= E
[
4Xk

]
+ 3E

[
2Xk

]
=

(
3

2
k2 +

3

2
k + 1

)
+ 3 (k + 1) =

3

2
(k + 1)

2
+

3

2
(k + 1) + 1.

By applying Lemmas 4 and 5 with k ← n, we obtain an estimator Y ← 2X − 1 that satisfies
E[Y ] = n and Var[Y ] ≤ 4n2. Thus, directly applying (15) gives an essentially useless reporting
range of Y ∈ [n − 4n, n + 4n]. However, by using the boosting techniques in Section 3.2, we can
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considerably improve this estimate: we can maintain an average of O( 1
ε2 ) copies of the algorithm

to form a better estimator Ȳ , and then take the median Ŷ of O(log( 1
δ )) copies of Ȳ , to achieve

Ŷ ∈ [(1− ε)n, (1 + ε)n] with probability ≥ 1− δ. (18)

For moderate ε and δ, this yields an algorithm with space complexity O(log log(n)), an exponential
improvement to the naïve algorithm. By being more careful with the implementation of the
Morris counter, e.g., incrementing with probability (1+α)−X instead of 2−X for some α ≈ ε2δ and
early terminating appropriately, [NY22] show that we can achieve the guarantee (18) using only
O(log log(nδ ) + log( 1

ε )) space, which for many interesting regimes is o(log(n)).

4 Sampling
In this section, we introduce sampling as an algorithmic task. Sampling, i.e., producing samples
ω ∈ Ω from some distribution over Ω that is either explicitly or implicitly given, is an inherently
randomized problem. It is one of the cornerstone tools in modern machine learning and data
science, representing many facets of the algorithmic toolkit. For example, it is used for parameter
estimation in statistics, and counting or integration in numerical analysis.

More recently, sampling has unlocked new algorithmic capabilities, e.g., uncertainty quantification
and generation. To explain the former, in settings where we are uncertain in a learning task, it is
often better to represent our knowledge in the form of a distribution. We can estimate quantities
like the variance of the distribution from samples, which helps us quantify our uncertainty. For
example, such techniques can be used to calibrate large language models so they can accurately
reflect their knowledge. Regarding the latter, a common task in generative modeling is to take
samples from a distribution π of interest, e.g., all pictures of cats or code snippets implementing
MergeSort. Given these samples, generative models attempt to produce new samples from π.

This section provides a basic overview of some simple, but very influential, ideas in sampling
algorithms. We begin with a classical sampling problem in Section 4.1, as an example of a more
general technique, rejection sampling, developed in Section 4.2. In Section 4.3, we conclude by
describing one application of rejection sampling to bias correction in Markov chain Monte Carlo
(MCMC) methods, the predominant sampling framework of today.

4.1 Reservoir sampling
In this section we consider the following problem: we are given a stream of items ω1, ω2, . . . , ωn ∈ Ω,
and our goal is to return a uniformly random item from the stream, i.e., ωi where i ∈ [n] is chosen
uniformly at random. The only catch is that we do not know n in advance, so the stream could
stop at any time. Another way of viewing this problem (more in line with Section 3.3) is that we
are building a data structure that supports two operations: Stream(ω), which inputs ω into the
stream, and Report(), which outputs a uniformly random item amongst those in the stream.

A naïve way to solve this problem is to simply store all streamed items, and then when Report() is
called after n calls to Stream, we randomly sample i ∈ [n] and output the ith item. However, this
implementation takes O(n) space, which can be very expensive when the stream itself is long (e.g.,
unique visitors to a popular website). The solution in this section, called the reservoir sampling
algorithm, solves the given data structure problem using only O(1) words of space.2

Our data structure maintains a counter i, initialized to 0, that represents the number of times
Stream has been called. It also maintains a “current” item, ω̄, initialized to None, which we can
think of as being stored in a reservoir. On an iteration where Stream(ω) is called, we update

ω̄ ←

{
ω̄ with probability i

i+1

ω with probability 1
i+1

. (19)

We then update i ← i + 1. In other words, we evict the current reservoir item with probability
1
i+1 , replacing it with the new streamed item. When Report() is called, we simply return ω̄.

2As usual, we work in the word RAM model (Section 7, Part I), where each item can be stored in O(1) space.
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It is clear that reservoir sampling only uses O(1) space, as it only needs to store a counter and
a single reservoir item. The key correctness claim is that for any n ∈ N, after Stream is called n
times with items {ωi}i∈[n], the resulting distribution on ω̄ is uniform over the n items. We give
two proofs of this fact, the second of which suggests a more general design technique.

Direct calculation. Suppose that Stream has been called n times with items {ωi}i∈[n], and let
π : [n] → [0, 1] be the resulting distribution of the reservoir item ω̄, i.e., π(i) := Pr[ω̄ = ωi]. Our
goal is to show that π(i) = 1

n for all i ∈ [n]. To do this, we can simply calculate:

π(i) =
1

i
· i

i+ 1
· i+ 1

i+ 2
· . . . · n− 1

n
=

1

i
· i
n

=
1

n
. (20)

Here, the first equality used that the only way that ω̄ = ωi is if ωi evicted the reservoir in the ith
call to Stream, and then it was not evicted in any of the future calls, i+ 1 ≤ j ≤ n. By using the
formula (19), this probability is 1

i for eviction in the ith call (as Stream had only been called i− 1

times previously when ωi is streamed), and j−1
j for non-eviction in all future calls i + 1 ≤ j ≤ n.

The second equality telescoped terms between consecutive non-eviction calls.

Fixing the distribution. The proof in (20) is somewhat mysterious, and seemed very specialized
to our setting. Here we give a different interpretation of our proof that is suggestive of a broader
technique. Suppose that items {ωi}i∈[n] have been streamed at the time Report is called, and for
all j ∈ [n], let πj be the distribution of the index of the reservoir item ω̄ after the first j calls to
Stream. Our goal is to show πn is the uniform distribution on [n]. We instead prove the stronger
claim that for all j ∈ [n], πj is the uniform distribution on [j], by induction.

After the first call to Stream, the update (19) shows that ω̄ = ω1 with probability 1 as claimed.
Now inductively suppose that πj is uniform over [j], for some j ∈ [n−1]. We can directly compute,
using the formula (19), that for all k ∈ [j + 1],

πj+1(k) =

{
j
j+1πj(k) k ∈ [j]

1
j+1 k = j + 1

.

Here the first case considers the chance that ωk is the current reservoir item after j calls completed.
The proof concludes using the inductive hypothesis:

j

j + 1
πj(k) =

j

j + 1
· 1

j
=

1

j + 1
.

Intuitively, this proof “fixes” the distribution πj to make it match πj+1, by adjusting the weights it
gives to [j] to match the desired output, and then inserting a weight of 1

j+1 on the (j + 1)th item.
This idea of correcting a known distribution is the key idea of rejection sampling.

4.2 Rejection sampling
Suppose you have a distribution π that you wish to sample from, but it is difficult to do so directly.
However, suppose further that you have the ability to sample from a “nearby” distribution µ 6= π,
which may be simpler than the actual target π, but which also approximates π well. The idea of
rejection sampling is to “fix” a sample from µ based on its relative probabilities according to π and
µ, so that the output distribution is instead π, and the overall sampler is efficient.

The general idea of basing sampling complicated distributions on simpler distributions is a powerful
idea in sampler design in general, and examples abound: for instance, the Box-Muller transform
shows how to generate random variables from π, the standard normal distribution, given the ability
to sample random variables from µ, the uniform distribution on [0, 1]. Often these transform-based
tools require fairly explicit manipulation of the formulas for π and µ. Here we outline a more flexible
technique that requires only very weak knowledge of the forms of π and µ.

In more detail, suppose π and µ are both distributions over a sample space Ω, and let Ω be discrete
for simplicity (although the same technique generalizes essentially verbatim to the continuous
setting). Further, suppose we know that for some nonnegative P : Ω→ R≥0 and Q : Ω→ R≥0,

π(ω) =
P (ω)

NP
, µ(ω) =

Q(ω)

NQ
, for all ω ∈ Ω,

where NP :=
∑
ω∈Ω

P (ω), NQ :=
∑
ω∈Ω

Q(ω).
(21)
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Intuitively, P and Q are “unnormalized” versions of π and µ, and NP , NQ are the normalization
constants that allow π and µ to be true probability distributions, i.e., so that

∑
ω∈Ω π(ω) =∑

ω∈Ω µ(ω) = 1. In this case, we use the notation π ∝ P to mean that π is the corresponding
normalized distribution. For example, if Ω = [4], P = {1, 2, 1, 0}, and Q = {1, 1, 1, 1}, then
NP = NQ = 4, π ∝ P is the distribution on [4] that puts weight 1

4 on items in {1, 3} and weight
1
2 on item 2, and µ ∝ Q is the uniform distribution on [4] putting weight 1

4 on every item.

Unnormalized distributions give us an extra degree of flexibility to work with, that allows us to
“bump up” a distribution µ pointwise to an unnormalized variant Q, at the cost of increasing
NQ. This flexibility will be used in our rejection sampling framework shortly. In practice, it is
often convenient to specify “weights” of items (e.g., counts in a dataset), that we wish to sample
proportionally to. Additionally, observe that while unnormalizing a distribution changes the weight
assigned to each item ω ∈ Ω, it preserves ratios between items: following (21), for any ω, ω′ ∈ Ω,

P (ω)

P (ω′)
=

NP · π(ω)

NP · π(ω′)
=

π(ω)

π(ω′)
.

The intuition is that unnormalized distributions reflect the relative importance of items.

We now have assembled all of the technical tools we need to formalize the rejection sampling
framework (the main other helpful background, conditional distributions, is reviewed thoroughly
in Section 6.2, Part I). We state the framework in Algorithm 1.

Algorithm 1: RejectionSample(µ, P,Q)

1 Input: Sample access to a distribution µ over a finite sample space Ω, P : Ω→ R≥0,
Q : Ω→ R≥0 such that µ,Q have the relationship in (21), and such that

P (ω) ≤ Q(ω) for all ω ∈ Ω. (22)

while True do
2 ω ← sample from µ

3 p← P (ω)
Q(ω)

4 Z ← 1 with probability p, otherwise Z ← 0
5 if Z == 1 then
6 return ω
7 end
8 end

The following analysis of Algorithm 1 is the main claim of the section.

Lemma 6. Let Ω be a finite sample space, let π and µ be distributions over Ω, and suppose P and
Q are unnormalized distributions satisfying (21). Further, suppose (22) holds. Algorithm 1 with
inputs µ, P,Q samples exactly from π, and uses NQ

NP
samples from µ in expectation.

Proof. Algorithm 1 repeatedly runs loops of Lines 1 through 8, until the random variable Z eval-
uates to 1, at which point it terminates. We want to understand two things: the probability that
Z = 1 on any given run, and the conditional distribution of ω on Z = 1.

We begin by discussing the former. If ω ∈ Ω is sampled, it is returned with probability P (ω)
Q(ω) .

Therefore, the overall acceptance probability is∑
ω∈Ω

µ(ω) · P (ω)

Q(ω)
=
∑
ω∈Ω

Q(ω)

NQ
· P (ω)

Q(ω)
=

∑
ω∈Ω P (ω)

NQ
=
NP
NQ

.

Each loop run terminates with this probability, which we model as a coin that comes up heads
with probability NP

NQ
. The expected number of tosses before our first heads follows from (7).

Now, consider the conditional distribution on Z = 1. It puts weight on ω ∈ Ω proportional to

Q(ω) · P (ω)

Q(ω)
= P (ω),
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where the first term is from the original sample ω ∼ µ, and the second is the acceptance probability.
We know that the corresponding normalized distribution is π as claimed.

Lemma 6 makes our goal in designing an instantiation of Algorithm 1 clear: we want to pick two
unnormalized distributions P and Q, such that π ∝ P for our target distribution π, and µ ∝ Q
for some “simple” distribution µ that we can sample from. Moreover, for Algorithm 1 to terminate
quickly, the shapes of P and Q should approximate each other in the following sense.

1. 0 ≤ P (ω) ≤ Q(ω) for all ω ∈ Ω, so pictorially, P stays at or below Q pointwise.

2.
∑
ω∈Ω Q(ω)∑
ω∈Ω P (ω) is small, so the algorithm terminates quickly. Intuitively, this is saying that Q is

not too much of an overestimate of P on average over the universe Ω.

As an illustrative example in continuous probability,3 suppose our goal is to output a uniformly
random point from the unit-radius circle in R2, i.e., the set C := {(x, y) ∈ R2 | x2 + y2 ≤ 1}.

One way to do this is to let π be the desired uniform distribution over the circle C, and P (ω) = 1 for
all ω ∈ C. We will also let S denote the unit square [−1, 1]× [−1, 1], µ be the uniform distribution
over S, and Q(ω) = 1 for all ω ∈ S. Clearly, 0 ≤ P (ω) ≤ Q(ω) for all ω ∈ S, and moreover by the
rules of continuous probability (see Section 6.1, Part I), NP and NQ are just the respective areas
of C and S in this example. Also, it is simple to generate a sample from µ ∝ Q, by sampling two
independent uniform random numbers in [−1, 1]. Thus, the expected number of iterations is

4

π
≈ 1.273 . . .

and Algorithm 1 is very likely to terminate using just a few samples, due to (10).

4.3 Metropolis-Hastings MCMC
We now briefly describe a powerful application of Section 4.2: the Metropolis-Hastings implemen-
tation of the Markov chain Monte Carlo (MCMC) method. This algorithm, like the FFT and
simplex method, was named a top-10 most influential algorithm of the 20th century [DS00].

Suppose that we are trying to sample from some distribution π over a universe Ω, which could be
discrete or even continuous. The key idea in MCMC is to design “local distributions” Tω : Ω→ [0, 1]
for each ω ∈ Ω, which can be viewed as specifying “transition probabilities” for a random walk
over Ω. Ideally, it should be possible to efficiently sample from Tω to implement the random
walk. Moreover, these local distributions should have the property that if ω is already distributed
according to π, then after one step of the corresponding random walk using the {Tω}ω∈Ω to govern
the next choice of ω, it should still be the case that ω ∼ π.

Intuitively, the strategy in MCMC is to simulate the random walk for many iterations until it
“mixes,” and ω becomes distributed according to a “stationary distribution” set to π. Under
relatively mild conditions, the stationary distribution of a MCMC algorithm is unique. However,
it can be rather difficult to find these local distributions Tω that magically happen to align into a
desired global distribution π over Ω, especially when π itself is not explicit (e.g., is only given as
proportional to weights, and depends on unknown normalization constants).

The Metropolis-Hastings algorithm uses rejection sampling to design Tω. The idea is: let Pω be
some simple distribution that coarsely resembles π zoomed in on a small neighborhood of ω, e.g.,
a uniform distribution, or a small Gaussian. We will use rejection sampling to “fix” Pω in a way
that makes π the overall stationary distribution. Concretely (in the discrete case), we let

Tω(ω′) = Pω(ω′) ·min

(
1,
π(ω′)Pω′(ω)

π(ω)Pω(ω′)

)
. (23)

This has a simple interpretation as a rejection sampling scheme, where we first draw ω′ ∼ Pω,
and then accept it with some probability in [0, 1]. This acceptance probability can actually be
evaluated even if both π and Pω are only given up to normalization constants (i.e., as unnormalized
distributions), which turns out to be important in many applications. Our goal, as in all rejection

3Thanks to Arun Jambulapati for this suggestion.
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sampling schemes, is to make sure that the rejection probability in (23) is not too small on average,
which can be interpreted as Pω capturing the “local shape” of π around ω.

Let us briefly argue that the Tω we gave actually do have π as a stationary distribution. Let ω ∼ π,
and let ω′ ∼ Tω be the next state of the random walk. We compute for any ω̄ ∈ Ω:

Pr [ω′ = ω̄] =
∑
ω∈Ω

π(ω)Tω(ω̄)

=
∑
ω∈Ω

min (π(ω)Pω(ω̄), π(ω̄)Pω̄(ω))

=
∑
ω∈Ω

π(ω̄)Tω̄(ω) = π(ω̄).

Thus, ω′ is also distributed ∼ π after the Metropolis-Hastings correction, as promised.

To give a very simple application, let π be the uniform distribution over some set K ⊂ Rd, and let
each Pω be the uniform distribution over a small ball centered at ω ∈ K. If we apply the Metropolis-
Hastings correction (23), then because ω ∈ K is always preserved, the acceptance probability is
simply 1 if ω′ ∈ K and 0 otherwise. Thus, the resulting Markov chain (called the ball walk) just
repeatedly draws ω′ in a small ball around ω until it finds a point in K, and then moves there.
Its rate of convergence ends up being proportional to two things: the size of the balls governing
the {Pω}ω∈K, and the amount of “surface area” of K at a certain coarseness, which governs the
proability that a transition steps outside the set and is rejected.

In general, the Metropolis-Hastings framework for MCMC lets us be quite creative with design-
ing the local distributions Pω, as long as we have ways to manipulate their density functions to
implement the correction step (23). This idea is widely-used in many samplers today.
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